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1 Introduction

In the recent years a considerable progress has been made in investigation of integrable

models of two-dimensional quantum field theory. S matrices [1] and form factors [2] have

been found in the framework of the bootstrap approach. A free field representation [3]

for the form factors of the sine-Gordon and Thirring models was proposed. But these

achievements are based on some guesses and we need some additional physical grounds

to understand better the nature of these results. The main problem can be formulated

in the following way. It is possible to construct sets of form factors, that describe some

local operators on the basis of the axiomatic approach. Moreover, it is possible construct

the whole space of local operators. But it turns out very difficult to understand which

operator corresponds to a given set of the form factors, and vice versa: if we consider a

given operator, then which set of axiomatically allowed form factors corresponds to it?

An approach to lattice models of statistical mechanics based on the free field rep-

resentation of correlation functions and form factors has been developed by the Kyoto

group [4–6]. In contrast to the situation in the quantum field theory this approach has a

firm physical basis. There is a simple rule that allows one to construct a bosonic repre-

sentative to any local lattice object. So it one can easily construct a set of form factors

corresponding to each local lattice insertion. On the other hand, the lattice models are

known to be described by models of quantum field theory at large scale in the vicinity

of the critical point. So, it seems promising to investigate these models in the vicinity

of the critical point to extract some information on the respective quantum field models.

Our program is the following. We consider a lattice theory and find form factors of some

local insertions in the scaling limit. Then from some additional information, such as scal-
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ing dimensions, conservation laws, symmetries, mutual locality etc. we associate a local

operator in the field theory to the insertion. This allows us to find to relate form factors

to particular operators. Here we do not fulfil this program sequentially, but make some

steps in this direction.

In this letter we consider the six-vertex model [7] in the antiferroelectric region in the

vicinity of the critical point. In the critical region this model is described by the SU(2)

invariant Thirring model or, equivalently, by the sine-Gordon model at the critical cou-

pling [8]. We analyze the spectrum, the S matrix, and the form factors of the polarization

operator σz.

Our result does not match that obtained by Jimbo and Miwa [6], but we shall see

that it is consistent with the formula for form factors in the sine-Gordon model, guessed

recently by Lukyanov [9]. We show the crucial role of the zero mode operators to the

behavior of the form factors in the scaling limit, and show how to pass to a ‘conjugate’

pair of the zero mode operators simplifies the limit.

2 Basic definitions and main strategy

The six-vertex model in the antiferroelectric region is described by two parameters x

and ζ ,

0 < x < 1, 1 < ζ < x−2,

so that the weight matrix of the model is given by the trigonometric R matrix

R(ζ)++
++ = R(ζ)−−−− = κ−1(ζ),

R(ζ)+−
+− = R(ζ)−+

−+ = κ−1(ζ)
(ζ − 1)x

1− x2ζ
, (2.1)

R(ζ)−+
+− = R(ζ)+−

−+ = κ−1(ζ)
(1− x2)ζ1/2

1− x2ζ
, κ(ζ) = ζ1/2 (x4ζ ; x4)∞(x2ζ−1; x4)∞

(x4ζ−1; x4)∞(x2ζ ; x4)∞
,

where (z; p)∞ =
∏∞
n=0(1 − zp

n). The R matrix satisfies the Yang-Baxter equation, and

ζ serves as a multiplicative spectral parameter. In particular, the row-to-row transfer

matrices T (ζ) ≡ T (x; ζ) commute for different values of ζ but fixed x.

The eigenvectors of the transfer matrix at the infinite lattice are ‘N -particle’ states

|ε1z1, . . . , εNzN 〉,

T (ζ)|ε1z1, . . . , εNzN 〉
(i) =

N∏
j=1

τ(zj/ζ)|ε1z1, . . . , εNzN〉
(1−i) (2.2)

with εj = ± ≡ ±1 being the ‘charge’ of ‘jth particle’, and zj is the ‘rapidity’ of ‘jth

particle’,

|zj | = 1. (2.3)

The superscript i = 0, 1 fixes the condition at the infinity [6].
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The ‘one-particle’ eigenvalue function τ(z) is given by

τ(z) = z1/2 Θx4(−x3z)

Θx4(−xz)
, (2.4)

where Θp(z) = (z; p)∞(p/z; p)∞(p; p)∞ is a multiplicative form of the θ1 function with the

Jacobi parameter p1/2:

Θp(z) = −2ip−1/8z1/2θ1(v; τ), z = e2πiv , eiπτ = p1/2.

Note that this form of the eigenvalue function is universal for all lattice models based on

the A1 type R matrices.

Scattering of elementary excitations of the six-vertex model is described by the fac-

torizable S matrix. So it is enough to determine the two-particle S matrix S(z)
ε′1ε
′
2

ε1ε2,

|ε1z1, ε2z2〉
(i)
out =

∑
ε′1ε
′
2

S(z1/z2)
ε′1ε
′
2

ε1ε2
|ε′1z1, ε

′
2z2〉

(i)
in .

It is given by [4]

S(z) = −R(z−1). (2.5)

We know that in the scaling limit, when we are bringing the system closer to the

critical point, simultaneously enlarging the scale, we have to obtain a system of relativistic

particles with the states |ε1θ1, . . . , εNθN 〉, the Hamiltonian H , and momentum operator

P , such that

P |ε1θ1, . . . , εNθN 〉 = M
N∑
j=1

sh θj |ε1θ1, . . . , εNθN 〉,

H |ε1θ1, . . . , εNθN 〉 = M
N∑
j=1

ch θj |ε1θ1, . . . , εNθN 〉,

(2.6)

with M being the mass of the particles, and θj being rapidities. Here the parameter

θ is connected somehow with z, and the functions M ch θ and M sh θ must be related

somehow with the function τ(z). The scattering matrices of the lattice models must as

well become the relativistic scattering matrices in the scaling limit.

The sine-Gordon model is the model with the action

A =
∫
d2x

(
1

16π
(∂µϕ)2 +

λ

β2
cos βϕ

)
.

The dimensionality of the constant λ is M2−2β2
. For 0 < β < 1 the term cosβϕ is a

relevant perturbation, and the theory is superrenormalizable. For β > 1 the perturba-

tion is irrelevant, and the properties of the theory are completely unknown. The critical

sine-Gordon theory corresponds to the marginal value β = 1. In fact, dimensional trans-

mutation takes place at this point, and the theory is an integrable theory of massive

interactive charged solitons. The scattering matrix of solitons is factorizable and the
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two-particle S matrix is given by

S(θ)++
++ = S(θ)−−−− = −S0(θ),

S(θ)+−
+− = S(θ)−+

−+ = −S0(θ)
θ

iπ − θ
, (2.7)

S(θ)−+
+− = S(θ)+−

−+ = −S0(θ)
iπ

iπ − θ
, S0(θ) =

Γ
(
1 + iθ

2π

)
Γ
(

1
2
− iθ

2π

)
Γ
(
1− iθ

2π

)
Γ
(

1
2

+ iθ
2π

) .
Now let us formulate our strategy. First, we make the scaling limit in the eigenvalue

function τ(z) and the S matrix S(z). We show that they give the relativistic spectrum

(2.6) and the critical sine-Gordon S matrix (2.7). This calculation is done directly on the

plane without the limit to the XXZ chain γ → 0. So it supplements the consideration of

the spectrum in Ref. [6].

The next step is calculation of the form factors. Form factors of any local operator

O(x) (x being the position of the operator) are matrix elements 〈0|O(0)|ε1z1 . . . εNzN 〉
(i)
in in

the lattice case or 〈0|O(0)|ε1θ1 . . . εNθN 〉in in the case of a continuous theory. In principle,

any correlation function can be expressed in terms of form factors [2, 6]. This limit is

nontrivial and we know no way to do it uniformly for all local operators. So we consider

the particular (but important) case of the polarization operator σz =

(
1 0

0 −1

)
, inserted

into a link of the lattice. Using the free field representation [6] we calculate the form

factors in the scaling limit. The most interesting feature of this limit is that two terms

corresponding to two nonzero matrix elements of the matrix σz cancel each other in the

leading order.

This means that the free field representation for the critical sine-Gordon model cannot

be extracted directly from the free field representation for the six-vertex model. The

subleading terms give the final integral representation for the form factors of σz. In turn,

this result may be compared with Lukyanov’s free field representation for the form factors

of the exponential operators [9] and to understand better its features.

It is interesting that the constituents of this free field representation are the same as

in the naive limit of the lattice model free field representation. However, interpretation

of these constituents changes to describe correctly essential subleading terms rather than

inessential leading ones.

Besides, this comparison lead us to the conclusion that

σz ∼ cos 1
2
ϕ(x).

It is important that all form factors of σz are proportional to M1/2 log cM with some

constant c. The power 1/2 of M may be considered as a scaling dimension of the operator

σz, which also supports the identification. The factor log cM is the effect of dynamical

mass generation. Indeed, dynamical mass generation affects correlation functions at any

distances and forbids the conformal field theory description in the ultra-violet region.
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3 Spectrum and S matrix

The scaling limit corresponds to the limit x→ 1, so we set

x = e−ε , ε→ 0.

Let us introduce also additive spectral parameters γ and ϑ that survive in the scaling

limit:
ζ = x−2γ/π, z = x−2iϑ/π,

γ, ϑ ∈ R, 0 ≤ γ ≤ π.
(3.1)

It is convenient to pass to the conjugate module in the theta functions. Namely, for

the function τ(ϑ) we have

τ(ϑ) =
θ4

(
iϑ
2π

+ 1
4
; iπ

2ε

)
θ4

(
iϑ
2π
− 1

4
; iπ

2ε

) = k′−1/2 dn

(
K

2
−

iKϑ

π

)
.

The Jacobi parameter, corresponding to the theta functions is

q = e−π
2/2ε .

We also use the usual designations: k and k′ are module and conjugate module, K and

K′ are half-periods.

The Jacobi parameter q tends to zero in the scaling limit and we can use the standard

expansions in q for theta functions. But before doing it let us understand, which values

of the spectral parameter correspond to the low-lying excitations which survive at a large

scale. The low-lying excitation correspond to the largest in absolute value transfer matrix

eigenvalues. The physical values of the spectral parameters ζ and z satisfy the constraints

1 ≤ ζ ≤ x−2 and |z| = 1. So we ought to find the maximum of |τ(z/ζ)|2 in z on the

unit circle for fixed ζ in the interval 1 ≤ ζ ≤ x−2, or, in other words, the maximum of

|τ(ϑ+ iγ)|2 in real ϑ for fixed γ, 0 ≤ γ ≤ π. To do it, note that the function of ϑ

|τ(ϑ+ iγ)|2 =
θ4

(
iϑ
2π
− γ

2π
+ 1

4
; iπ

2ε

)
θ4

(
iϑ
2π

+ γ
2π
− 1

4
; iπ

2ε

)
θ4

(
iϑ
2π
− γ

2π
− 1

4
; iπ

2ε

)
θ4

(
iϑ
2π

+ γ
2π

+ 1
4
; iπ

2ε

) (3.2)

can be analytically continued to a doubly periodic function on the complex plane. Then

its derivative in ϑ has two double poles in the periodicity region, and, therefore, has

exactly 4 zeros. Using the symmetries of this function it is easy to check that all 4

extremal values are situated at the ‘symmetric points’ and two of them on the real axis.

The maximum is achieved at the point ϑ = 0 and the minimum at ϑ = π2/2ε.

We see that we ought to consider the limit of the elliptic functions q → 0 (K→ π/2,

K′ → ∞) for the values of ϑ in any finite interval around 0. Applying to (3.2) the

standard limiting formulas

dn
2Kα

π
=

π

2K
[1 + 4q cos 2α +O(q2)],

k′ = 1− 8q +O(q2), K =
π

2
[1 + 4q +O(q2)],
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we obtain

τ(ϑ) = 1 + 4iq shϑ+O(q2).

The system can be considered continuous if

q e|ϑ| � 1 or −
π2

2(1 + δ)ε
< ϑ <

π2

2(1 + δ)ε
, δ > 0.

Let us think that our system lives on the lattice (am, bn), m,n ∈ Z, a and b being

lattice parameters. We will think of am as of the imaginary time it′ and of bn as of the

space coordinate x′. Recall that the operator T (1) is the shift operator by b [6]. So the

momentum operator p′ is given by

eip′(ϑ)b ' 1 + 4iq sh ϑ

or

p′(ϑ) =
4q

b
shϑ.

The Hamiltonian is given by e−aH = T (z), and for the one-particle energy we have

e−E
′(ϑ)a = τ(ϑ+ iγ) ' 1 + 4iq sh(ϑ+ iγ)

or

E ′(ϑ) = −
4iq

a
sh(ϑ+ iγ) =

4q

a
(sin γ ch ϑ− i cos γ sh ϑ).

To restore the relativistic spectrum we recall that the initial lattice system is essentially

anisotropic. Hence, we need to change coordinates (t′, x′)→ (t, x), so that the spectrum

would take the standard form E(θ) = M ch θ, p(θ) = M sh θ. It is achieved by the

coordinate transformation{
t = t′ b

a
sin γ = −ib sin γ ·m,

x = it′ b
a
cos γ + x′ = +b cos γ ·m+ bn,

(3.3)

and by setting

θ = ϑ, M =
4q

b
. (3.4)

At last, substituting Eqs. (3.1) and (3.4) into the six-vertex model S matrix (2.5) we

obtain the critical sine-Gordon S matrix (2.7) in the limit x→ 1.1

4 Free field representation and conjugate zero mode

Now let us turn to the calculation of form factors. We start from the free field represen-

tation of Ref. [6].

Consider the Heisenberg algebra

[P,Q] = −i, [am, an] = δm+n,0
[2m]x[m]x

m

(
[s]x =

xs − x−s

x− x−1

)
,

1In the case of the six-vertex model we do not need the duality transformation here [10].
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The spaces Hi, i = 0, 1 are generated by the operators a−n, n > 0, and exp(±i
√

2Q) from

the vacuum vectors |0〉(i), defined as

an|0〉
(i) = 0, n > 0,

P |0〉(i) =
i
√

2
|0〉(i).

We also shall use the notation |p〉 for the vector

|p〉 = eipQ |0〉(0), P |p〉 = p |p〉.

The vertex operators V (1−i,i)
ε (ζ), Ṽ (1−i,i)

ε (z): Hi → H1−i are defined as [6]2

V
(1−i,i)

+ (ζ) = G1/2x3/4:eiφ(ζ):,

V
(1−i,i)
− (ζ) = G1/2x3/4

∮
C1

dv

2πi
F1(v, ζ):e

iφ(ζ)−iφ(x−1v)−iφ(xv):,

Ṽ
(1−i,i)

+ (z) = G−1/2x3/4z1/2:eiφ̃(z):,

Ṽ
(1−i,i)
− (z) = G−1/2x3/4z1/2

∮
C2

dw

2πi
F2(w, z):e

iφ̃(z)−iφ̃(x−1w)−iφ̃(xw):,

(4.1)

where

G =
(x2; x4)∞
(x4; x4)∞

, F1(v, ζ) =
(1− x2)vζ1/2

x(v − x−1ζ)(v − xζ)
, F2(w, z) =

(1− x2)z1/2

x(w − x−1z)(w − xz)
, (4.2)

and

φ(ζ) =
1
√

2
(Q− iP log(x3ζ)) +

∑
n 6=0

an

i[2n]x
x|n|/2ζ−n,

φ̃(z) = −
1
√

2
(Q− iP log(x3z))−

∑
n 6=0

(−1)n
an

i[2n]x
x−|n|/2z−n.

(4.3)

The normal ordering operation :. . .: places P to the right of Q, and an to the right of

a−n, n > 0. The contours C1 and C2 encircle the point 0 so that xζ is inside and x−1ζ is

outside C1, and x−1z is inside and xz is outside C2.

The form factors of local operators O are given by [6]

〈0|O|ε1z1 . . . εNzN 〉
(i)
in =

1

χi(x4)
TrHi

(
x4D(i)

Ô(i,i′)Ṽ (i′,1−i′)
εN

(zN) . . . Ṽ (1−i,i)
ε1

(z1)
)
, (4.4)

Here

D(i) =
P 2

2
−

P

2
√

2
+
∞∑
n=1

n2

[2n]x[n]x
a−nan (4.5)

is the shift operator

[D(i), V (1−i,i)
ε (ζ)] = ζ

d

dζ
V (1−i,i)
ε (ζ), [D(i), Ṽ (1−i,i)

ε (z)] = z
d

dz
Ṽ (1−i,i)
ε (z),

2In terms of Ref. [6] V
(1−i,i)
ε (ζ) ∼ Φ

(1−i,i)
−ε (ζ1/2), Ṽ

(1−i,i)
ε (z) ∼ Ψ

∗(1−i,i)
−ε (z).
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and χi(t) is the character of Hi,

χi(t) = TrHi t
D(i)

= (t1/2; t)−1
∞ .

The operator Ô(i,i′) is determined by O and consists of the operators V (1−i,i)
ε (ζ). We shall

consider here an important example of the polarization operator σz, inserted into one of

the vertical links of the lattice. The respective operator (̂σz)
(i,i)

is given by

(̂σz)
(i,i)

= −
∑
ε

εV
(i,1−i)
−ε (x−2ζ)V (1−i,i)

ε (ζ).

Consider an arbitrary trace

T
(i)
N =

1

χi(x4)
TrHi

(
x4D(i)

:eφN : . . . :eφ1 :
)
,

where

:eφj : = eαjQ eεβjP exp
( ∞∑
n=1

Ana−n

)
exp

( ∞∑
n=1

A−nan

)
.

It is easy to check that the trace can be factorized,

T
(i)
N = H

(i)
N FN ,

into the contribution of the zero mode (Q,P ), H
(i)
N , and the contribution of the oscillators

an, FN . The oscillators contribution is given by

FN =
∏
j

Cj
∏
j<j′

Fjj′,

logCj =
1

χ∗(x4)
Tr∗

(
x4D∗φ+,jφ−,j

)
,

logFjj′ =
1

χ∗(x4)
Tr∗

(
x4D∗φ∗jφ∗j′

)
,

χ∗(t) = Tr∗
(
tD∗

)
.

(4.6)

Here asterisks mean that the contribution of oscillators is only taken into account; φ+

and φ− are contributions into φ from a−n and an respectively (n > 0).

The zero mode contribution is the most interesting part. Let us write it down explic-

itly. It is only nonzero for
∑
j αj = 0. Let us introduce the notations

A =
N∑
j<j′

αjβj′, B =
N∑
j=1

βj. (4.7)

Then

H
(i)
N χ0(x

4) = Tr
(i)
0

(
x4D

(i)
0 eαNQ eεβNP . . . eα1Q eεβ1P

)

=
∑

n∈Z+i/2

〈
n
√

2
∣∣∣ e
−4ε

(
P2

2
− P

2
√

2

)
eαNQ eεβNP . . . eα1Q eεβ1P

∣∣∣n√2
〉
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= e−iεA
∑

n∈Z+i/2

exp
(
−4ε

(
n2 −

n

2

)
+ εn
√

2
∑
j

βj

)

= e−iεA θ3−i

(
−iε

2 +
√

2B

2π
; i

4ε

π

)

=
1

2

√
π

ε
e−iεA exp

4ε(1

4
+

B

4
√

2

)2
 θ3+i

(
1

4
+

B

4
√

2
; i
π

4ε

)
, (4.8)

where the subscript 0 means the contribution of the zero mode. We passed to a conjugate

module in the last equality. The most interesting feature of this expression is that we can

rewrite the last theta function as a trace of an operator. Expanding it in the series, we

can easily check that

H
(i)
N χ0(x

4) =
1

2

√
π

ε
exp

4ε(1

4
+

B

4
√

2

)2
×

×
∑
n∈Z

′
〈
πn

2
√

2

∣∣∣∣∣ e− 4
ε
P ′2

2
+i(−1)i

√
2P ′ e−iεαNQ

′
eiβNP

′
. . . e−iεα1Q

′
eiβ1P

′

∣∣∣∣∣ πn2
√

2

〉′
. (4.9)

Here P ′ and Q′ is a new pair of canonically conjugate operators and |p〉′ designates the

eigenvector of P ′:

[P ′, Q′] = −i, P ′|p〉′ = p |p〉′, |p〉′ = eipQ |0〉′. (4.10)

Naively, the term with n = 0 only survives in the limit ε→ 0. But as we shall see below

in the calculation of the form factors of σz this term vanishes, so that the terms with

n = ±1 become leading.

Note also that we can substitute P → iP ′/ε and Q → −iεQ′ directly in the vertex

operators. This substitution does not affect the commutation relations of the vertex

operators, but the summation rule over the momentum values changes drastically and

the operator D(i) must be substituted by

D′(i) = ε−2

(
P ′2

2
− i

(−)iP ′

2
√

2

)
+
∞∑
n=1

n2

[2n]x[n]x
a−nan. (4.11)

The explicit form of the nonzero ‘two-point’ traces is

− logF11(γ1 − γ2) =

=
1

χ∗(x4)
Tr∗

(
x4D∗φ∗(ζ1)φ∗(ζ2)

)
=
∞∑
n=1

e−εn

n

sh εn

sh2 2εn
ch 2εn

(
1−

γ1 − γ2

π

)
,

− logF22(θ1 − θ2) =

=
1

χ∗(x4)
Tr∗

(
x4D∗φ̃∗(z1)φ̃∗(z2)

)
=
∞∑
n=1

eεn

n

sh εn

sh2 2εn
ch 2εn

(
1− i

θ1 − θ2

π

)
,

− logF12(γ1 − iθ2) =

=
1

χ∗(x4)
Tr∗

(
x4D∗φ∗(ζ1)φ̃∗(z2)

)
=

∞∑
n=1

(−1)n−1

n

sh εn

sh2 2εn
ch 2εn

(
1−

γ1 − iθ2

π

)
. (4.12)
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Similarly, the traces of the form χ−1
∗ (x4) Tr∗(x

4D∗φ+φ−) are

− log[x−3/4G−1/2C+] =
∞∑
n=1

e−3εn sh εn

2n sh2 2εn
,

− log[x−3/4G−1/2F−1
1 (v, ζ)C−(γ, µ)] =

=
∞∑
n=1

e−3εn sh εn

2n sh2 2εn

[
−4

(
ch 2εn

µ

π
− 1

)
ch εn+ (2 ch εn− 1)2

]
,

− log[x−3/4G1/2C̃+] =
∞∑
n=1

e−εn sh εn

2n sh2 2εn
, (4.13)

− log[x−3/4G1/2F−1
2 (w, z)C̃−(θ, ν)] =

=
∞∑
n=1

e−εn sh εn

2n sh2 2εn

[
−4

(
ch 2εn

iν

π
− 1

)
ch εn+ (2 ch εn− 1)2

]
,

v = e
2ε
π

(γ+µ) , w = e
2iε
π

(θ+ν) .

It is convenient also to introduce the functions

F̄11(γ) = F−1
11 (γ − π/2)F−1

11 (γ + π/2), ¯̄F 11(γ) = F̄−1
11 (γ − π/2)F̄−1

11 (γ + π/2),

F̄12(γ) = F−1
12 (γ − π/2)F−1

12 (γ + π/2), ¯̄F 12(γ) = F̄−1
12 (γ − π/2)F̄−1

12 (γ + π/2),

F̄22(θ) = F−1
22 (θ + iπ/2)F−1

22 (θ − iπ/2), ¯̄F 22(θ) = F̄−1
22 (θ + iπ/2)F̄−1

22 (θ − iπ/2).

(4.14)

All traces of the vertex operators can be written in terms of the functions (4.12-4.14). To

do it we need to write a function Cε, z
1/2
j C̃ε for each Vε(ζj), Ṽε(zj), a function F11(γj−γj′)

for each pair V+(ζj) and V+(ζj′), j > j′, a function F11(γj−γj′)F̄11(γj−γj′−µj′) for each

pair V+(ζj) and V−(ζj′), j > j′, etc., then to write the overall coefficient from the zero

mode, and finally to integrate over all variables µj and νj .

5 Scaling limit of form factors

Consider the scaling limit of the functions (4.12). Applying the formula

∞∑
n=1

(
a2

εn2
+
a1 e−εn

n
+ εf(εn)

)
=
π2

6ε
a2 − a1 log ε+

∫ ∞
0

dη f(η) +O(ε)

for f(η) being finite as η → 0, we easily obtain

F11(γ) = ε−1/4q1/12(f11(γ) +O(ε)), (5.1a)

F22(θ) = ε1/4q1/12(f22(θ) +O(ε)), (5.1b)

F12(γ) = q1/24

(
exp

ε

4

[(
1−

γ

π

)2

−
7

12

]
+O(ε∞)

)
, (5.1c)
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with

− log f11(γ) =
∫ ∞

0

dη

η

[
e−η

sh η

sh2 2η
ch 2η

(
1−

γ

π

)
−

1

4η
+

1

4
e−η

]
,

− log f22(θ) =
∫ ∞

0

dη

η

[
eη

sh η

sh2 2η
ch 2η

(
1− i

θ

π

)
−

1

4η
−

1

4
e−η

]
.

(5.2)

The expression for F12 demands a more detailed consideration. It is easy to check, that

the formula is correct up to all orders in ε, because in the decomposition of the summand

in ε the odd powers of n vanish. And it is easy to check that
∑∞
n=1(−1)n−1n2p = 0, p ≥ 1.

However, we need a more strong (and more rigorous) estimation than O(ε∞). We can

give it for the ratio

F̄12(γ + π/2)

F̄12(γ − π/2)
=

Θx4(−xy)

Θx4(−x3y)
= y1/2[1 +O(q)], y = x2(1−γ/π). (5.3)

The last equality follows from the earlier consideration of the function τ(z). We shall see

that this estimation is strong enough to find the form factors of σz.

For C±, C̃± we find

C+ ' ε−1/8q1/24c+,

vC−(γ, µ) ' ε−1/8q1/24c−
π

2ε
f1(µ) eεγ/π ,

C̃+ ' ε−3/8q1/24c̃+,

wC̃−(θ, ν) ' ε−3/8q1/24c̃−
π

2ε
f2(ν)

(5.4)

with

log c+ = −
1

2

∫ ∞
0

dη

η

(
e−3η sh η

sh2 2η
−

1

4η
+

1

4
e−η +

e−η

2 ch η

)
,

log c− = −
1

2

∫ ∞
0

dη

η

(
e−3η sh η

sh2 2η
(2 ch η − 1)2 −

1

4η
+

1

4
e−η +

e−η

2 ch η

)
,

log c̃+ = −
1

2

∫ ∞
0

dη

η

(
e−η

sh η

sh2 2η
−

1

4η
+

1

4
e−η −

e−η

2 ch η

)
, (5.5)

log c̃− = −
1

2

∫ ∞
0

dη

η

(
e−η

sh η

sh2 2η
(2 ch η − 1)2 −

1

4η
+

1

4
e−η −

e−η

2 ch η

)
,

f1(µ) =
π

(µ− π/2)(µ+ π/2)
exp

∫ ∞
0

dη

η

e−3η

sh 2η

(
ch 2η

µ

π
− 1

)
,

f2(ν) = −
π

(ν + iπ/2)(ν − iπ/2)
exp

∫ ∞
0

dη

η

e−η

sh 2η

(
ch 2η

iν

π
− 1

)
.

All equalities in (5.4) are up to O(ε), but the expression for C− includes the precise

dependence on γ, which will be important later.

We need to make one more remark. The exact formulas for form factors on the lattice

contain integrations over closed paths encircling zero. It means that we must integrate
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over µ and ν along to infinite contours. But at |µ|, |ν| ∼ 1/ε the formulas (5.1a-5.5) is no

more valid. We should analyze its contribution. We can argue in the following way. It is

easy to check that

f11(iθ) ∼ |θ|
−1/4 e|θ|/4 , f1(iθ) ∼ |θ|−1/2 e−|θ|/2 ,

f22(θ) ∼ |θ|
1/4 e|θ|/4 , f2(θ) ∼ |θ|−3/2 e−|θ|/2

for large real θ. Therefore for large imaginary µ or large real ν a factor ∼ f1(µ)f−2
11 (µ) ∼

e−|µ| or ∼ f2(ν)f
−2
22 (ν) ∼ |ν|−2 e−|ν| appears. We shall see that the zero mode gives the

factors ∼ e|µ|, e|ν| in the case of σz. So the contribution of νj ∼ 1/ε is negligible, but the

contribution of µ ∼ 1/ε must be taken into account. Nevertheless, as we shall discuss

later, the correct answer can be extracted from the approximation for small µ.

At last, we define the states

|ε1θ1, . . . , εNθN 〉
(i)
in =

(
2ε

π

)N/2
|ε1z1, . . . , εNzN 〉

(i)
in

so that it would have the natural for two-dimensional field theory normalization:

1

N !

∫
dNθ

(2π)N
(i)
in〈ε1θ

′
1, . . . , εNθ

′
N |ε1θ1, . . . , εNθN 〉

(i)
in = 1.

Now we are ready to calculate of the form factors of σz in the scaling limit. The form

factors of σz read precisely

〈0|σz|ε1θ1, . . . , ε2nθ2n〉
(i)
in =

= −
∫
C′1

dµ

2πi

∫
C′2

dnν

(2π)n
∑
α=±

αH
(i)
−αα(γ, µ; ε, θ, ν)F−αα(γ, µ; ε, θ, ν), (5.6)

where H and F are contributions of the zero mode and the oscillators respectively. Let

us begin with the oscillators.

The contour C ′1 goes from −i∞ to +i∞ to the right of −1
2
π and to the left of 1

2
π, and

the contour C ′2 goes from −∞ to +∞ above i
2
π and below − i

2
π (with an inflection).

The oscillators contribution factorizes as follows:

F−αα(γ, µ; ε, θ, ν) =
2ε

π
F−αα(µ)F (ε, θ, ν)S−αα(γ, µ; ε, θ, ν).

Here F−αα(µ) is the F function for the vacuum expectation of σz:

F−+(µ) =
2ε

π
C−(γ + π, µ)C+F11(π)F̄11(µ+ π),

F+−(µ) =
2ε

π
C+C−(γ, µ)F11(π)F̄11(π − µ).

(5.7)

From the evident property F11(γ + 2π) = F11(−γ) we obtain

F+−(µ)

F−+(µ)
=

C−(γ)

C−(γ + π)
= x = e−ε . (5.8)
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Note that this result is precise. Up to O(ε) the quantities F−+(µ) and F+−(µ) coincide

and

F−+(µ) ' c+c−f1(µ)f11(π)f̄11(µ+ π). (5.9)

The function F (ε, θ, ν) is the factor that only depends on the asymptotic states rather

than on the local operator:

F (ε, θ, ν) =
(

2ε

π

)2n

ei ε
π

∑
θj C̃n

+

∏
j∈N−

C̃−(θj , νj)
∏
j<j′

F22(θj′ − θj)×

×
∏

j<j′,j′∈N−

F̄22(θj′ − θj + νj′)
∏

j<j′,j∈N−

F̄22(θj′ − θj − νj)×

×
∏

j<j′∈N−

¯̄F 22(θj′ − θj + νj′ − νj)

'
(

2

π

)n
c̃n+c̃

n
−

∏
j∈N−

f2(θj , νj)
∏
j<j′

f22(θj′ − θj)×

×
∏

j<j′,j′∈N−

f̄22(θj′ − θj + νj′)
∏

j<j′,j∈N−

f̄22(θj′ − θj − νj)×

×
∏

j<j′∈N−

¯̄f 22(θj′ − θj + νj′ − νj) (5.10)

with N± = {j|εj = ±}. From the requirement
∑
j αj = 0 we have

∑
j εj = 0 or #N+ =

#N−.

The third factor S−αα(γ, µ; ε, θ, ν) is given by

S−+(γ, µ; ε, θ, ν) =
∏
j

F12(γ − iθj + π)F12(γ − iθ)F̄12(γ − iθj + µ+ π)×

×
∏
j∈N−

F̄12(γ − iθj − iνj + π)F̄12(γ − iθj − iνj)
¯̄F 12(γ − iθj + µ− iνj + π),

S+−(γ, µ; ε, θ, ν) =
∏
j

F12(γ − iθj + π)F12(γ − iθ)F̄12(γ − iθj + µ)×

×
∏
j∈N−

F̄12(γ − iθj − iνj + π)F̄12(γ − iθj − iνj)
¯̄F 12(γ − iθj + µ− iνj), (5.11)

and it is equal to 1 up to O(ε). But the ratio can be estimated much more precisely by

use of Eq. (5.3):

S+−(γ, µ; ε, θ, ν)

S−+(γ, µ; ε, θ, ν)
=

∏
j

F̄12(γ − iθj + µ)

F̄12(γ − iθj + µ+ π)

∏
j∈N−

¯̄F 12(γ − iθj + µ− iνj)
¯̄F 12(γ − iθj + µ− iνj + π)

= eiεΘ/π +O(q), (5.12)

Θ =
∑
j∈N+

θj −
∑
j∈N−

(θj + 2νj).

Note that Θ = iπB′/
√

2 with B′ being the contribution of Ṽε into B from Eq. (4.7).
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We conclude that the factor F−αα(γ, µ; ε, θ, ν) is independent of α up to O(ε), but we

are able to calculate the ratio F+−/F−+ with much better precision, namely up to O(q).

This precision allows us to treat the terms with n = ±1 in Eq. (4.9), which are of the

order q1/2.

Now consider the zero mode contribution H−αα. From Eq. (4.8) we obtain

H
(i)
−αα(γ, µ; ε, θ, ν) = e−iεA′− ε

2(
2γ
π
−1) e−

2εµ
π

α+1
2 exp

4ε(1− α

4
+

B′

4
√

2
−

µ

2π

)2

−
ε

4

×

×θ3+i

(
1− α

4
+

B′

4
√

2
−

µ

2π
;
iπ

4ε

)/
θ3+i

(
1

4
;
iπ

4ε

)
, (5.13)

where A′ and B′ are contributions of Ṽε into the constants A and B from Eq. (4.7).

Collecting equations (5.8), (5.12), and (5.13) we obtain for the functions in the integrand

of Eq. (5.6)

H+−F+−

H−+F−+

= θ4−i

(
B′

4
√

2
−

µ

2π
;
iπ

4ε

)/
θ3+i

(
B′

4
√

2
−

µ

2π
;
iπ

4ε

)
+O(q) (5.14)

[recall that θ4(u) = θ3(±1/2+u)]. It means that the difference F−+−F+− is proportional

to the difference of theta functions in the scaling limit,

θ3+i(u; iπ/4ε)− θ4−i(u; iπ/4ε) = (−)iq1/2 · 4 cos 2πu+O(q). (5.15)

In our case

u = −
µ

2π
+

B′

4
√

2
= −

1

2π

(
µ−

i

2
Θ
)
.

We see that the contributions of the order q0 [terms with n = 0 in Eq. (4.9)] cancel each

other in σz, and all form factors are comparable and proportional to q1/2 ∼ M1/2. Once

we extracted the factor of this order, we may only take into account the terms of the

order ε0 in all other multipliers. We obtain the expression

〈0|σz(0)|ε1θ1, . . . , ε2nθ2n〉
(i)
in =

= (−)1−i2(bM)1/2
∫
C′1

dµ
2πi

∫
C′2

dnν
(2π)n

F−+(µ)F (ε, θ, ν) cos
(
µ− i

2
Θ
)
, (5.16)

where F−+(µ) and F (ε, θ, ν) are given by approximate equations (5.9) and (5.10). We

see that the integrand nearly splits into two factors, one of which only depends on µ and

the other one on νj . The only factor depending on both µ and νj is the ‘zero mode’

factor cos(µ− i
2
Θ). Note that the function F−+(µ) is even. Therefore, we may substitute

cos(µ − i
2
Θ) in the integrand by cosµ cos i

2
Θ, and the integral factorizes completely.

Consider the function F−+(µ) cosµ. Calculating it numerically by use of the Mathematica

package I found it to be a constant:

F−+(µ) cosµ = −1.
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Hence the integral in µ is linearly divergent. This is the problem mentioned above. There-

fore we should consider large |µ| ∼ ε−1. Note, that Eqs. (5.1c), (5.3), (5.8), (5.12) and

therefore (5.14) are valid in the case of large µ. The equation (5.15) is valid in the whole

region −π2/2ε < Imµ < π2/2ε except small vicinities of the ends. To find approxima-

tions of F11, C− in the region |µ| � 1 one can expand summands in εn everywhere except

the places where εn enters with a large coefficient µ, then one can sum the series in the

regions of convergence and continue analytically the answers. Such consideration shows

that the integrands in all form factors of σz remain factorable and constant in µ in nearly

the whole region −π2/2ε < Imµ < π2/2ε. On the other hand the integration region in µ

for finite ε must be precisely [−iπ2/2ε, iπ2/2ε].

So we finally obtain

〈0|σz(0)|ε1θ1, . . . , ε2nθ2n〉
(i)
in =

= (−)i
2

π
(bM)1/2 log

(
4

bM

) ∫
C′2

dnν

(2π)n
F (ε, θ, ν) ch

Θ

2

= (−)i
(

2

π

)n+1

(bM)1/2 log
(

4

bM

)
c̃n+c̃

n
−

∫
C′2

dnν

(2π)n
ch
(

1

2

∑
j∈N+

θj −
1

2

∑
j∈N−

(θj + 2νj)
)

×
∏
j∈N−

f2(ν)
∏
j<j′

f22(θj′ − θj)
∏

j<j′,j′∈N−

f̄22(θj′ − θj + νj′)
∏

j<j′,j∈N−

f̄22(θj′ − θj − νj)

×
∏

j<j′∈N−

¯̄f 22(θj′ − θj + νj′ − νj). (5.17)

For n = 0 it matches the well known Baxter–Kelland formula [13]

(−)i〈σz〉(i) =
(x2; x2)2

∞

(−x2; x2)2
∞

' ε−1q1/2(2π +O(q)).

Let us interpret the result from the point of view of quantum field theory. First of all,

note that every form factor is proportional to M1/2. It means that the scaling dimension

of the field σz(x) is 1/2. There are two linearly independent local fields of this dimension

in the critical sine-Gordon theory, eiϕ/2 and e−iϕ/2. We expect that the field σz(x) is

a linear combination of these fields. Comparison with the result of Ref. [9] supports

this conclusion and makes it possible to calculate coefficients of the combination. The

decomposition of σz corresponds to the decomposition of ch 1
2
Θ into two exponentials in

Eq. (5.17). To make it clear, let us pass from the bosonization of the lattice model to the

bosonization of the field theory.

The ‘conjugate zero mode’ operators P ′ and Q′ survive in the scaling limit, but the

coefficient at P ′2 in D′(i) tends to infinity. So we may only take into account P ′. The only

trace of Q′ lies in the requirement
∑
j αj = 0. Considering form factors of lattice objects

like σz we must accurately extract the leading terms in (4.9), as we have done above. But

for the field theory operators we can consider any expectation 〈P ′| . . . |P ′〉. For ε → 0 it

takes the form

H
(i)
N (P ′) = (bM/4)4P ′2/π ei(−1)i

√
2P ′ eiβNP

′
. . . eiβ1P

′
. (5.18)
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It means that the zero mode contribution to the scaling dimension of the fields is equal

to 4P ′2/π2. The contribution (5.18) just provides the factors before exponent field in

Lukyanov’s formula for vertex operators corresponding to the field eiaϕ for P ′ = πa/
√

2.

Note that in this case 4P ′2/π2 = 2a2 gives the correct conformal dimension of the field eiaϕ.

Consider the oscillators an. It is tempting to think that the set of an tends in the

scaling limit to a continuous set of operators a(η). But it is not quite correct. To see it,

let us consider the field F12(γ). The expression for this correlation function contains the

factor (−1)n [see Eq. (4.12)], which is rapidly oscillating in the scaling limit for finite γ.

It reflects the fact that the oscillators forming V± differ from those forming Ṽ± by the

factor (−1)n [see Eqs. (4.1), (4.3)]. It means that the set of an splits in two continuous

sets of operators a(η) and b(η),

[a(η), a(η′)] = [b(η), b(η′)] = δ(η + η′)
sh 2η sh η

η
, [a(η), b(η′)] = 0. (5.19)

Now let us define the operators φ(γ) and φ̃(θ) as follows3

φ(γ) =

√
2

π
P ′γ −

∫ ∞
−∞

dη
a(η)

i sh 2η
e−|η|/2 e

2
π
ηγ ,

φ̃(θ) = −
i
√

2

π
P ′θ +

∫ ∞
−∞

dη
b(η)

i sh 2η
e|η|/2 ei 2

π
ηθ .

(5.20)

Finally the definition of the vertex operators is the following:

V+(γ) = g1/2:eiφ(γ):,

V−(γ) = g1/2
∫
C′1

dµ

2πi

π

µ2 − π2/4
:eiφ(γ)−iφ(γ+µ−π/2)−iφ(γ+µ+π/2):,

Ṽ+(θ) =

√
2

π
g−1/2:eiφ̃(θ):, (5.21)

Ṽ−(θ) = −

√
2

π
g−1/2

∫
C′2

dν

2π

π

ν2 + π2/4
:eiφ̃(θ)−iφ̃(θ+ν+iπ/2)−iφ̃(θ+ν−iπ/2):

with

log g =
∫ ∞

0

dη

η

e−η (ch η − 1)

2 ch η

if we assume the regularization rule

∫ ∞
0

dη

(
a2

η2
+
a1 e−η

η
+ f(η)

)
−→

∫ ∞
0

dη f(η),
∫
C′1

dµ

2πi
const. =

π

2ε
const.

for f(η) finite at η → 0.

The vertex operators Ṽ±(θ) are Lukyanov’s vertex operators from Ref. [9]. The factors

before the exponential operators are hidden in the zero mode P ′. The operators V±(γ) can

3The terms ∼ log x3 in (4.3) do not contribute traces in this limit. In the exact formulas they can be

also omitted together with the factors x3/4 in (4.1).
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be considered as the primed operators from Ref. [3] at the infinitely distant point. They

only interact with the operators Ṽ±(θ) through the zero mode. Their physical meaning

in the framework of the quantum field theory is vague. As we can see, the initial idea by

Lukyanov that the primed vertex operators describe local fields was in the right direction,

but it is necessary to move them to the point π2/2ε which is infinitely far for ε→ 0.

Comparison with Ref. [9] gives

σz(x) ∼ cos 1
2
ϕ(x). (5.22)

Unfortunately we are unable to find the proportionality coefficient from the vacuum ex-

pectations, found by Lukyanov in Ref. [11]. In the limit β → 1 these expectation values

become infinite. It means that the critical sine-Gordon is not described by a free boson

in the ultraviolet region, and the normalization of the operators of Ref. [11], based on the

conformal field theory, is not applicable in this case. In the lattice theory it is reflected

by the additional factor ε−1 ∼ log(4/bM) in the form factors. This factor means that the

normalization changes with the scale. Maybe it witnesses about logarithmic factors in

the correlation functions at short distances.

Our last remark concerns the fields [6, 14] σ± = 1
2
(σx ± iσy). The leading zero mode

contribution to these fields comes from n = 0 in (4.9), but the scaling dimension 1/2

comes from the oscillators, because the requirement
∑
j αj = 0 gives here #N+−#N− =

±2, and the factors depending on q in (5.1a) and (5.4) do not cancel. It is easy to

understand from the form factors axioms [3] that the fields σ±(x) are semilocal with

respect to σz(x). There are two semilocal fields in the critical sine-Gordon theory e±iϕ̃/2

with ϕ̃(x) =
∫ x1

−∞ dy
1 ∂0ϕ(y). So we can suppose that

σ±(x) ∼ e±
i
2
ϕ̃(x) .

6 Discussion

We conclude that the explicit form of the form factors in the scaling limit of the six-

vertex model is consistent with Lukyanov’s conjecture on the free field representation

of the form factors of the exponential fields in the sine-Gordon model for β = 1, a =

1/2. A plausible argumentation extends this consistency to arbitrary values of a. This

investigation can be continued in two ways. First, it would be interesting to calculate form

factors of more general local fields, e. g. products of adjacent polarizations. Second, it is

important to generalize this derivation to other models. For example, the bosonization of

the Andrews–Baxter–Forrester model [12] must give in the scaling limit the bosonization

for the restricted sine-Gordon model.

We expect that the divergency in the integral in µ is a peculiarity of the six-vertex

model or of the critical sine-Gordon model. It is related to the logarithmic factors in

the scaling behavior of quantities, and originates in the dynamical mass generation phe-

nomenon.
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